Aide_CAD_Robot

Copyright ©2024 by Christophe Perrard. All Rights Reserved. (version 20240927)

Table des matières

Accueil	. 4
Presentation générale	. 4
Avertissement important	. 4
Généralités sur CAD Robot	. 5
Exigences du système	. 5
Installation,	. 5
Réglage des paramètres système de l'ordinateur utilisé	. 5
Licences	. 6
Utilisation sans licence (version d'évaluation)	. 6
Types de licence	. 6
Clés mono-licence	. 6
Clés multi-licences	6
Litilisation de la souris	. 0
Extension de fichiers utilisées	. /
Fenêtre nrincinale	່ <u>ເ</u>
Différents menus de la fenêtre principale	. ບ . ຊ
Menu "Logiciel"	۰ 0
Menu "Concention"	ر . ۵
Menu "Environnement"	10
Monu "Possourco"	11
Menu "Application"	11
Menu Application	11
Darre a Outlis	11
Aide en linne	12
Alde en ligne	12
Gestion des preferences	13
Fenetre commune : choix d'une transformee	14
Conception des objets dans la CAO integree	14
Acces a la conception	15
Les solides	15
Les mécanismes	15
Les outils	15
Les robots	15
Les constituants	16
Les APIs	16
Les opérateurs	16
Description de quelques fonctionnalités	16
Importer des objets dans la CAO	16
Exporter des objets de la CAO	16
Importation d'objets surfaciques issus d'autres logiciels	16
Gestion de l'environnement d'un projet (cellule robotisée)	17
Description de quelques fonctionnalités globales	17
Ouvrir/Enregistrer/Fermer une cellule	17
Créer une nouvelle cellule	17
Visualiser l'environnement	19
Test de collision	20
Gérer les objets de l'environnement	20

Gestion des transformées	22
Création et management du RLI	22
Introduction et définition du RLI	23
Définition des entrées/sorties d'une ressource	23
Définition d'un échange d'informations entre deux ressources	23
Gestion des ressources de l'environnement	23
Activation d'une ressource	23
Introduction à l'activation	24
Activation proprement dites de ressources	24
Réactivation de ressources déjà activées	25
Activation depuis la programmation	26
Notion d'asservissement	27
Commande de la réalisation de mouvements à une ressource	27
Mode "Ressources"	27
Mode "Jog"	27
Mode "Postures"	29
Mode "Transformées"	31
Mode "Traces"	33
Mode "Where"	33
Apprentissage de postures et de transformées avec le MCP	33
Gestion des postures de la ressource active	33
Aide au placement d'un robot dans un environnement	34
Sélection des points de travail à vérifier (à atteindre)	34
Recherche manuelle de l'emplacement du robot	35
Recherche automatisée de l'emplacement du robot ou « autoplace »	36
Test d'atteignabilité réelle	37
Création d'une application pour une ressource	38
Description du « Master »	38
Programmation	38
Programmation en langage générique	39
Panneau d'édition d'une procédure (repère Dfigure VI.2.1)	40
Assistants de programmation des différentes fonctions d'une procédure	en
langage générique	40
Programmation en langage SFC	41
Programmation d'équation en langage CFC	41
Simulation	41
Gestion des états de départ d'une simulation	41
Création et gestion d'une simulation	42
Forçage des signaux du RLI	43
Traduction	44
Sauvegarde de l'ensemble des données dans un seul fichier	45
Enregistrement et ouverture d'un fichier .simu	45
Verrouillage d'un fichier .simu	45
Lexique, définitions et termes métier	46
• •	-

Accueil

Aide à l'utilisation de CAD_Robot

User's guide Version du 14 novembre 2024

Créé avec HelpNDoc Personal Edition: Produire des aides en ligne pour les applications Qt

Presentation générale

CAD_Robot est un logiciel de programmation hors ligne de robots. Il est universel, dans le sens où il n'est lié à aucune marque ou fabriquant de robots.

Le logiciel CAD_Robot est téléchargeable sur le site http://www.CAD-Robot.com

Créé avec HelpNDoc Personal Edition: Documentation Qt Help facile

Avertissement important

Ce logiciel est uniquement écrit pour être utilisé à des fins pédagogiques et dans le cadre de l'illustration de

travaux pratiques de robotique sur les plateformes partenaires du projet ; cette restriction sous=entend que ces travaux sont réalisés sous la responsabilité d'un tuteur pédagogique formé et habilité. Son utilisation n'est donc pas prévue pour d'autres utilisations, notamment l'utilisation à des fins industrielles.

En conséquence, les auteurs déclinent toute responsabilité quant à l'utilisation de ce logiciel et des conséquences qui pourraient en découler en dehors de ce cadre d'utilisation strict.

Créé avec HelpNDoc Personal Edition: Transformez votre processus de documentation avec l'analyseur de projet de HelpNDoc

Généralités sur CAD_Robot

Créé avec HelpNDoc Personal Edition: Mettez à niveau votre processus de documentation avec un outil de création d'aide

Exigences du système

CAD_Robot nécessite au minimum un ordinateur de type PC, exploitant le système d'exploitation Windows version 7 minimum.

8 Go minimum de RAM est préconisé.

Un écran 16 pouces de taille minimale 1920 x 1080 est conseillé.

Une liaison internet est nécessaire pour accéder à l'aide en ligne. Il est également possible de travailler en mode hors ligne (on peut alors préalablement télécharger la documentation du logiciel au format .pdf sur le site de CAD_Robot)

Créé avec HelpNDoc Personal Edition: Optimisez votre productivité avec un outil de création d'aide

Installation

Pour utiliser CAD_Robot, il suffit de télécharger la version la plus récente du logiciel depuis le site de présentation et, après décompression (fichier .zip), de positionner l'exécutable dans le dossier de votre choix. Aucune autre manipulation n'est nécessaire aujourd'hui.

Pour lancer CAD_Robot, il suffit de double-cliquer sur cet exécutable.

Créé avec HelpNDoc Personal Edition: Révolutionnez votre révision de documentation avec l'analyseur de projet de HelpNDoc

Réglage des paramètres système de l'ordinateur utilisé

Les paramètres régionaux du système d'exploitation doivent être réglés sur le séparateur numérique sous forme de point (« . »); en cas de mauvais réglage, par exemple avec la virgule (« , »), un message d'erreur au lancement apparaît et arrête le logiciel.

Figure 1. Message d'erreur au lancement du logiciel.

Correction sous windows :

 Panneau de configuration > Horloge et Région > Modifier les paramètres de date, d'heure ou de nombre

O Paramètres supplémentaires > Symbole décimal > « . »

Créé avec HelpNDoc Personal Edition: Faites de la Documentation un jeu d'enfant avec l'interface utilisateur propre et efficace de HelpNDoc

Licences

CAD_Robot n'est pas gratuit !

Créé avec HelpNDoc Personal Edition: Améliorez votre processus de documentation avec les fonctionnalités avancées de HelpNDoc

Utilisation sans licence (version d'évaluation)

Après téléchargement, il est possible d'utiliser CAD_Robot sans aucune licence, à des fins d'évaluation. Dans ce cas, toutes les fonctionnalités du logiciel sont disponibles pour l'utilisateur, à l'exception des enregistrements et sauvegardes. De même, les post-processeurs (traductions vers un langage de robot industriel ou d'automate) ne permettront pas l'enregistrement des traductions réalisées.

Des fichiers d'exemples sont disponibles sur le site du logiciel pour tester ses différentes fonctionnalités sans avoir à tout refaire à chaque fois.

Créé avec HelpNDoc Personal Edition: Créez sans effort une documentation de haute qualité avec un outil de création d'aide

Types de licence

La protection est faite par dongle USB uniquement. Deux types de dongles sont disponibles (figure In.1) :

- les dongles mono-licence (couleur bleue)
- les dongles multi-Licences (couleur jaune)

Figure In.1. Dongles licence

Une licence de base comprend :

- l'accès à toutes les fonctions du logiciel
- un post-processeur au choix

Il est bien sûr possible de posséder la licence pour plusieurs postes (cas des formations) et l'accès à plusieurs postprocesseurs, au choix.

Toute licence achetée est acquise « à vie ». L'achat d'une licence donne droit à toutes les mises à jour du logiciel pendant 1 an (téléchargement sur le site).

Créé avec HelpNDoc Personal Edition: Gagnez du temps et de la frustration avec la fonction de conversion WinHelp HLP vers CHM de HelpNDoc

Clés mono-licence

Les dongles mono-licence sont identifiés par leur couleur bleue. Installation :

Rien à faire ; branchez le dongle sur un port USB de la machine hote de CAD_Robot

Créé avec HelpNDoc Personal Edition: Améliorez votre documentation d'aide avec un outil de création d'aide

Clés multi-licences

Les dongles multi-licences sont identifiés par leur couleur jaune. Installation :

• Téléchargez, installez et lancez le serveur de licences (DinkeyServer.exe) fourni sur le site de

CAD_Robot

• Branchez le dongle multi-licences sur cette machine (serveur)

Toute autre machine étant sur le même brin de réseau que la machine serveur pourra alors exécuter CAD_Robot avec une licence sur jeton (dans la limite du nombre de licences disponibles).

Créé avec HelpNDoc Personal Edition: Qu'est-ce qu'un outil de création d'aide ?

Utilisation de la souris

Lors de l'utilisation de la vue 3D, il est possible de se déplacer dans l'environnement (CAO ou cellule) en utilisant les boutons de la souris. Les trois commandes traditionnelles de la souris (figure 1) permettent :

- 1. Translation du point de vue dans la cellule
- 2. Zoom avant et arrière du point de vue
- 3. Rotation du point de vue autour de la cellule

Figure I.1 : Boutons de la souris

Créé avec HelpNDoc Personal Edition: Rendez votre documentation accessible sur n'importe quel appareil avec HelpNDoc

Extension de fichiers utilisées

Le logiciel exploite quatre types de fichiers différents, basés sur le format .xml (<u>https://fr.wikipedia.org/wiki/Extensible_Markup_Language</u>).

Le type et l'extension de chaque fichier est explicité dans le tableau I.1 ci-dessous.

Type de fichier	Extension	Description
Objets CAD	.objt	Fichier contenant un ou plusieurs objets séparés.
Environnement	.envt	Fichier contenant un environnement (objets positionnés les
		uns par rapport aux autres) pour constituer une cellule
		robotisée.
Module	.modl	Fichier contenant un module de programmation (ensemble
		de procédures) d'un objet de l'environnement.
Simulation	.simu	Fichier contenant un environnement et les modules d'une
		cellule robotisée afin d'en réaliser la simulation.
Tableau I.1 : Extensions des fichiers utilisées par le logiciel		

Créé avec HelpNDoc Personal Edition: Rationalisez votre processus de documentation avec la fonction de

conversion WinHelp HLP vers CHM de HelpNDoc

Fenêtre principale

La fenêtre principale du logiciel CAD_Robot se décompose en sept zones, comme le montre la figure 1 cidessous.

Différents menus de la fenêtre principale

Les menus de la fenêtre principale sont organisés de la gauche vers la droite en suivant une logique de progression de la conception d'une cellule robotisée :

"Logiciel"

Sert essentiellement à la gestion des préférences de l'utilisateur

Conception

Permet à l'utilisateur de créer des bjets de base servant ensuite à créer des cellules (solides, mécaanismes, robotts,...)

Environnement

Permet à l'utilisateur de créer une cellule contenant les objets et les transformées qu'il doit contenir pour le projet étudié

Ressource

Permet de sélectionner le groupe de ressources actives et d'étudier les mouvements, accessibilités de celles-ci Application

Permet de programmer les ressources, de les simuler puis de traduire les programmes en langage cible de la ressource (automate, robot, interface homme-machine ou IHM,...)

Créé avec HelpNDoc Personal Edition: Créez sans effort une documentation de haute qualité avec un outil de création d'aide

Menu "Logiciel"

Ce menu permet d'accéder aux informations et fonctionnalités :

- A propos et contacts
- O Accès à l'aide en ligne
- Réglage des options de fonctionnement du logiciel.
- O Ajustement de la taille des fenêtre à la taille de l'écran utilisé.

Créé avec HelpNDoc Personal Edition: Maximisez la protection de vos PDF en suivant ces étapes simples

Menu "Conception"

Accès à un module de conception rudimentaire des objets qui seront ensuite intégrés dans l'environnement. Un objet se décompose en :

- Solides
 - Ensemble de volumes
- Axes
 - Articulation (motorisée ou non) entre deux solides ; le premier est le père, le second est le fils
 - Un axes est soit linéaire, soir une rotation
- Transformées
- Postures de base ; une posture est un ensemble des variables articulaires qui seront appliquées à un objet (« home » étant la posture où tous les axes ont leur variable articulaire à zéro).
- Un ensemble de solides décrivant le volume enveloppe de l'objet
- Il y a 4 formes de base (volumes) qui sont intégrées nativement dans le logiciel :
 - Les parallépipèdes (2 paramètres)
 - Les cylindres (2 paramètres)
 - Les cônes (2 paramètres)
 - Les sphères (1 paramètre)

Il existe 7 types d'objets exploités par le logiciel (tableau I.2) :

- Les solides : ces objets ne contiennent qu'un seul solide, sans articulation (exemple : une table).
- Les **mécanismes** : un ensemble de solides muni d'articulations. Un mécanisme est pilotable via ses postures (exemple : un plateau tournant)
- Les **outils** : un outil est un mécanisme destiné à être embarqué par un robot (exemple une pince avec ses doigts mobiles)
- Les robots : c'est un objet de type mécanisme mais en plus pilotable par les transformées à atteindre, via

un modèle géométrique inverse

- Les **constituants** : ce sont des solides qui constituent le produit à fabriquer. Ils sont déplaçables par un opérateur ou par un objet animé ; ils peuvent également s'assembler pour former un nouveau solide.
- Les **API** (Automate programmable Industriel) : c'est un solide qui peut être programmé pour piloter la cellule.
- Les IHM (Interface Homme Machine) : ce sont des API munis d'interfaces de dialogue avec l'opérateur.
- Les opérateurs : ce sont des mécanismes représentant des opérateurs humains.

Un autre type d'objets est utilisés par le logiciel, mais sans possibilité de création via le module de CAO : les **traces**, qui sont laissées lors d'un mouvement d'un robot par l'outils qu'il manipule.

Chaque type d'objet est associé à une couleur ; une cellule n'est donc pas représentée dans ses vraies couleurs, mais selon les types d'objets qui y sont présents.

Type d'objet	Description	Couleur par défaut
Solide	Un solide	Cyan
Mécanisme	Des solides, des axes, des postures	Vert
Outil	Des solides, des axes, des postures	Vert
	embarquables	
Robot	Des solides, des axes, des postures et un MGI	Orange
Constituant	Un solide du produit	Rouge
API	Automate programmable industriel	Bleu
IHM	Interface homme-machine	Violet
Opérateur	Opérateur humain	Blanc
Volume enveloppe	Volume atteignable par un robot ou un	Jaune transparent
	opérateur	
Trace	Chemin parcouru par l'extrémité d'un outil lors	Vert clair
	du mouvement d'un robot	

Tableau I.2 : Extension utilisées par le logiciel

Il y a possibilité d'importer des formes surfaciques d'objets au format standard .obj.

Créé avec HelpNDoc Personal Edition: Générateur facile de livres électroniques et documentation

Menu "Environnement"

Les objets créés en CAO sont placés sur des repères définis par l'utilisateur. Ces repères sont reliés entre eux sous la forme d'une arborescence, au fur et à mesure de l'implantation de ceux-ci par l'utilisateur. Le premier repère de cette arborescence, toujours présent, est l'origine de l'environnement baptisé « monde ». La figure I.3. représente un exemple d'arborescence :

Figure I.2 : Extension utilisées par le logiciel

Ainsi, on constate qu'il y a un repère d'origine unique (Monde) dont la transformée associée est nulle. Chaque autre repère est défini par rapport à son ancêtre direct (son père) par une transformée simple. Chaque repère peut être aisément défini par rapport à n'importe quel autre par ce système.

A noter que dans le cas d'un robot, par exemple, la position du poignet sera définie par rapport au monde du robot par la posture qui sera fixée à un instant donné au robot.

Attention ! Les notions de repère et de transformée sont confondues ; en effet, la transformée qui permet de positionner un repère par rapport à son père est unique. Donc à tout repère ne correspond qu'une seule transformée.

Créé avec HelpNDoc Personal Edition: Faites de la documentation un jeu d'enfant avec un outil de création d'aide

Menu "Ressource"

Ce menu permet de choisir la ressource active puis de définir ses caractéristiques (postures, vitesses (MDESCs) et configurations (MACs)) ; Il est également possible de déplacer l'organe terminal du triplet de ressources choisies (robot, poignet, effecteur)

Créé avec HelpNDoc Personal Edition: Convertir des documents Word en eBooks : Un guide étape par étape avec HelpNDoc

Menu "Application"

Ce menu permet de définir le module de la ressource active (ensemble de données et de procédures déterminant son comportement).

Créé avec HelpNDoc Personal Edition: Créez sans effort une documentation d'aide de haute qualité avec un outil de création d'aide

Barre d'outils

Il est possible d'accéder rapidement aux fonctionnalités principales du logiciel par les boutons de la barres d'outils de la page principale (figure I .2 et tableau I.3). Ces boutons ne sont actifs que dans certains états du logiciel.

Figure I.3 : Boutons de la barre de d'outils

Ces différents boutons permettent d'accéder aux fonctions suivantes :

Repère	Info-bulle	Accès au menu concerné
0	1 A propos Logiciel A propos	
2	Aide en ligne	Logiciel Aide en ligne (touche F1)
3	Préférences	Logiciel Préférences
4	Concevoir des objets	Conception Concevoir des objets
6	Ouvrir environnement	Environnement Ouvrir
6	Enregistrer environnement	Environnement Enregistrer sous
0	Intégrer des objets à l'environnement	Environnement Intégrer des objets de la CAD
8	Gérer les transformées	Environnement Gérer les transformées
9	Activer des ressources	Ressource Activer des ressources
10	Gérer des postures	Ressource Gérer les postures
1	МСР	Ressource Panneau de contrôle (MCP)
12	Traces	Logiciel Préférences Trace
B	Volumes enveloppes	Logiciel Préférences Volume enveloppe
14	Détection de collisions	Environnement Test de collisions
ß	Créer un fichier de réalité mixte	Environnement Visualiser Créer un fichier mixed reality

16	Programmation	Application Programmation du module
17	Vérifier la programmation	Application Vérifier la programmation
18	Simulation	Application Simulation de la cellule Gérer une
		simulation
19	Traduction	Application Traduction du module

Tableau I.3 : Actions des boutons de la barre de menus

Créé avec HelpNDoc Personal Edition: Convertissez rapidement et facilement votre document Word en eBook ePub ou Kindle

Fonctions générales et fonctions communes

Créé avec HelpNDoc Personal Edition: Documentation Qt Help facile

Aide en ligne

L'aide à CAD_Robot est accessible par les moyens suivants :

- Par l'utilisation du navigateur web intégré au logiciel (Figure 1 ci-dessous) ; l'adresse de l'aide en ligne de CAD_Robot est directement indiquée. Une connexion internet est alors nécessaire. Le navigateur intégré est accessible par :
 - Par la barre d'outils ou le menu "logiciel" ou "F1"

Logiciel > Aide en ligne

Accès rapide par le barre d'outils (2: icône Par l'appui sur la touche "F1"

- Accès à l'aide en ligne par tout autre navigateur à l'URL https://www.cad-robot.com/documentation/html/accueil.html
- Parle téléchargement et la consultation de la documentation au format .pdf à l'adresse : <u>https://www.cad-robot.com/bibliotheque/Telechargements/Documentation_CAD_Robot.pdf</u>
 Le téléchargement préalable de la documentation au format .pdf permet à l'utilisateur de s'affranchir d'une connexion internet lors de l'exploitation du logiciel.

Figure 1 : Navigateur intégré de CAD+Robot pour accéder à l'aide en ligne

Le navigateur intégré permet une utilisation facilitée de l'aide en exploitant des fonctionnalités de :

- Table des matières hiérarchisée et liens hypertextes
- O Utilisation d'index prédéfinis
- O Fonctions de recherche par mots-clés

Créé avec HelpNDoc Personal Edition: Améliorez votre documentation d'aide avec un outil de création d'aide

Gestion des préférences

Logiciel > Préférences

Accès rapide par le barre d'outils : icône

Dans cette fenêtre, il est possible, notamment,

- de déterminer les conditions d'affichage des traces

Accès rapide par le barre d'outils : icône

- de choisir d'afficher les volumes enveloppes des objets équipés d'axes

Accès rapide par le barre d'outils : icône

(n° **13** § I.V)

- etc

Créé avec HelpNDoc Personal Edition: Obtenez des résultats de documentation professionnels avec un outil de création d'aide

Fenêtre commune : choix d'une transformée

Cette fenêtre est utilisée régulièrement lorsque l'utilisateur doit choisir un repère de l'environnement ; par exemple lors de :

- Agencement des objets de la cellule
- Activation d'une ressource
- Attachement d'un constituant,

Cette fenêtre (figure II.1) permet :

- De naviguer dans l'arborescence des transformées de la cellule pour en choisir une
- De visualiser la transformée choisie dans l'environnement et de montrer ses caractéristiques
- De sélectionner la transformée à utiliser dans d'autres fonctions
- -

...

Figure II.1. Fenêtre de sélection d'une transformée

Créé avec HelpNDoc Personal Edition: Rationalisez votre processus de documentation avec l'analyseur de projet de HelpNDoc

Conception des objets dans la CAO intégrée

Créé avec HelpNDoc Personal Edition: Maximisez vos capacités de documentation avec l'analyseur de projet de HelpNDoc

Accès à la conception

Conception > Concevoir des objets

Accès rapide par le barre d'outils : icône

Le menu "Conception" permet de créer des objets qui seront plus tard assemblés pour constituer une cellule. Tous les objets possèdent un référentiel de référence. On distingue huit types d'objets :

- solides,
- mécanismes,
- outils,
- robots,
- constituants,
- API,
- IHM
- opérateurs

Il est possible également de concevoir des UMEs, qui sont des parties d'objets. Une UME est généralement constituée de deux solides reliés par un axe. Le concept d'UME permet de créer une collection d'éléments standard qui pourront ensuite être réutilisés pour constituer des objets plus complexes, comme des robots ou des mécanismes.

Créé avec HelpNDoc Personal Edition: Créez sans effort un site Web de documentation de qualité professionnelle avec HelpNDoc

Les solides

Ce sont des objets inertes (pas d'axes) qui représentent de la matière. Les solides sont eux-mêmes constitués de volumes, dont certains sont prédéfinis :

- Les parallépipèdes,
- les cylindres,
- les cônes
- Les sphères
- •

Créé avec HelpNDoc Personal Edition: Ne restez pas dans le passé : convertissez vos fichiers d'aide WinHelp HLP en CHM avec HelpNDoc

Les mécanismes

Ce sont des ensembles de solides reliés pas des axes (motorisés ou non). Un mécanisme pourra donc animer d'autres objets qui lui seront liés. Un mécanisme ne peut être animé que par leurs variables articulaires.

Créé avec HelpNDoc Personal Edition: Maximisez la production de votre documentation avec l'analyseur de projet avancé de HelpNDoc

Les outils

Ce sont des mécanismes qui seront tout particulièrement animés par des robots et qui pourront manipuler d'autres objets.

Créé avec HelpNDoc Personal Edition: Maximisez les capacités de votre fichier d'aide CHM avec HelpNDoc

Les robots

Ce sont des mécanismes, d'architecture mécanique arborescente, dotés en plus d'un modèle géométrique inverse. Il peuvent donc être aussi animés par leurs coordonnées opérationnelles, en plus de leurs variables articulaires.

Créé avec HelpNDoc Personal Edition: Transformez votre processus de création de fichier d'aide CHM avec HelpNDoc

Les constituants

Ce sont des solides particuliers, qui peuvent être manipulés dans la cellule et déplacés. Ce sont les objets qui constituent le produit fini traité par la cellule.

Créé avec HelpNDoc Personal Edition: Révolutionnez votre production de documentation avec l'interface utilisateur étonnante de HelpNDoc

Les APIs

Ce sont les organes de commande (Automates Programmables Industriels) qui permettent de commander l'ensemble des autres objets programmables de la cellule. Ce peut être aussi des IHM (Interface Homme-Machine) :

Ces objets ne sont pas articulés, ce sont donc des objets "solides".

Créé avec HelpNDoc Personal Edition: Ajoutez facilement le cryptage et la protection par mot de passe à vos PDF

Les opérateurs

En cours de développement, c'est un pantin animé qui permet de visualiser les opérateurs humains qui évoluent dans l'environnement de la cellule. Les opérateurs ne seront animés que par l'intermédiaire de leurs postures, il ne sont pas dotés de modèle géométrique inverse pour l'instant.

Créé avec HelpNDoc Personal Edition: Créez sans effort une documentation de haute qualité avec un outil de création d'aide

Description de quelques fonctionnalités

L'import exploite des fichiers dont l'extension est ".objt". Un fichier peut contenir un ou plusieurs objets.

Créé avec HelpNDoc Personal Edition: Générer des livres électroniques EPub facilement

Importer des objets dans la CAO

L'import ajoute de nouveaux objets dans la CAO sans supprimer ceux qui étaient déjà présents.

Conception > Importer des objets Ou bien

Conception > Concevoir des objets puis bouton "Importer des objets"

Créé avec HelpNDoc Personal Edition: Révolutionnez la production de votre documentation avec un outil de création d'aide

Exporter des objets de la CAO

L'export permet de ne sauvegarder dans le fichier d'export que les objets souhaités.

Conception > Exporter des objets

ou

Conception > Concevoir des objets puis bouton "Exporter les objets"

Créé avec HelpNDoc Personal Edition: Générateur de documentations PDF gratuit

Importation d'objets surfaciques issus d'autres logiciels

Il est également possible d'ajouter par importation des volumes quelconques, issus de logiciels de CAO. Ces volumes sont des objets 3D surfaciques, au format « .objt ».

Pour en savoir plus sur ce format standard, le lecteur peut consulter la page : https://fr.wikipedia.org/wiki/Objet_3D_(format_de_fichier)

Créé avec HelpNDoc Personal Edition: Ajoutez facilement le cryptage et la protection par mot de passe à vos PDF

Gestion de l'environnement d'un projet (cellule robotisée)

Ce menu permet de créer une cellule robotisée (multi-robots), de gérer les transformées de cette cellule (isolées ou agencées en chemins), de gérer les constituants du produit (attachement aux différentes ressources et assemblage entre constituants) et dans le futur, d'estimer un temps de cycle pour la cellule étudiée.

Créé avec HelpNDoc Personal Edition: Création d'aide CHM, PDF, DOC et HTML d'une même source

Description de quelques fonctionnalités globales

Les fichiers manipulés sont dotés de l'extension ".envt" (environnement).

Créé avec HelpNDoc Personal Edition: Générateur d'aides Web gratuit

Ouvrir/Enregistrer/Fermer une cellule

Environnement > Ouvrir

et

Accès rapide par le barre d'outils : icône

Environnement > Fermer Cette fonctionnalité efface tout le contenu d'une cellule.

Créé avec HelpNDoc Personal Edition: Comment protéger vos PDF avec le cryptage et les mots de passe

Créer une nouvelle cellule

Environnement > Nouveau

Cette fonctionnalité (assistant) permet de créer une nouvelle cellule avec les objets contenus dans la CAO. Tout d'abord, un formulaire de renseignements de la cellule apparaît afin de l'identifier (figure III.1) :

 Description de 	l'environnement	-	×
Nom	Aucun nom		
Version	0.0 du date de la dernière modif		
Auteur	nom de l'auteur		
Description			

Figure III.1 : Formulaire de renseignements de la cellule

Puis apparaît un second formulaire, permettant d'agencer les objets de la cellule entre eux en les important de la CAO (figure III.2.) :

Intégration d'ob	ojets dans l'enviro	nnement	- □ >
Type d'objets	solides	~	
Contenu de la bas	e d'objets		Contenu de l'environnement
a		Nom de la nouvelle instance	
		Transformée père	
		Monde	
		>> Ajouter une instance >>	

Figure III.2 : Formulaire d'agencement des objets de la cellule

Procédure d'agencement des objets de la cellule :

• On choisit un objet de la CAO en sélectionnant son type dans le comboBox "Type d'objets"

- puis en sélectionnant cet objet dans la liste "Contenu de la base d'objets".
- On peut lui donner un autre nom que celui qu'il porte dans la CAO (ainsi, on pourra distinguer deux objets issus du même modèle de la CAO) dans le champ "nom de la nouvelle instance".
- Puis on positionne cet objet dans la cellule sur le référentiel du « TreeView »(arborescence) "Transformée père"
- Enfin, on valide l'ajout en cliquant le bouton ">> Ajouter une instance >>".
- L'ajout de l'instance de l'objet ajoute également les référentiels liées à cet objet dans l'environnement de la cellule. D'autres objets pourront alors être ajoutés sur ces nouveaux référentiels.

En cas d'erreur, il est possible de supprimer l'instance de l'objet dans la cellule (bouton ">> Supprimer l'instance >>") après avoir sélectionné l'objet de la cellule dans la liste "contenu de l'environnement".

La suppression d'un objets de l'environnement ne supprime pas les référentiels qui lui étaient liés ; ceci évite d'avoir des objets enfants qui deviendraient orphelins par cette manœuvre.

Créé avec HelpNDoc Personal Edition: Convertir facilement des documents Word en livres électroniques avec HelpNDoc

Visualiser l'environnement

Environnement > **Visualiser**

Ce menu, par les 3 sous-menus qu'il contient, permet :

- de tout redessiner la cellule ; dans le cas d'un affichage incohérent (rare), le logiciel redessine tout l'environnement
- de faire une copie d'écran de l'environnement depuis le point de vue de visualisation. Cette fonction permet à l'utilisateur de constituer son dossier d'avant projet avec des illustrations adaptées au besoin.

• de réaliser un fichier en réalité mixte de l'environnement au format normalisé .gltf (Graphics Langage Transmission Format). GLTF est un format de fichier scènes et modèles 3D utilisant le format JSON. Cette fonction permet de montrer en réalité mixte le projet de la cellule dans l'environnement réel de l'utilisateur. Pour l'instant, les fichiers obtenus sont statiques (pas de mouvements des ressources de l'environnement).

Accès rapide par le barre d'outils : icône

Plus d'informations sur ce dernier format :

 $\underline{https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html}$

Créé avec HelpNDoc Personal Edition: Créez sans effort des fichiers PDF cryptés et protégés par mot de passe

Test de collision

Environnement > **Test** de collision

Accès rapide par le barre d'outils : icône

Cette fonctionnalité permet de vérifier la présence d'une collision entre des volumes d'un solide primaire (considéré comme fixe), appartenant à un objet et :

- soit des volumes d'un solide secondaire (considéré comme mobile), appartenant à un objet ; dans ce cas une collision (intersection entre volumes) est recherchée,
- soit une liste de référentiels (un repère quelconque ou la liste des repères d'une trace) ; dans ce second cas, une distance minimale est calculée entre les repères et les volumes choisis.

Créé avec HelpNDoc Personal Edition: Générateur complet d'aides multi-formats

Gérer les objets de l'environnement

Environnement > Gérer les objets de l'environnement

Accès rapide par le barre d'outils : icône

Cette fonctionnalité permet de modifier l'organisation de la hiérarchie des objets de la cellule (figure III.3). Cette méthode possède plus de fonctionnalités que le menu précédent.

Aide_CAD_Robot

•				
Gérer les objets de l'enviror	inement X			
Environnement				
Nom : TestAsservissements				
Version : 1.0				
Objets de l'environnement :				
* Convoyeur				
RailLineaire				
Robot UR5e				
YouRing				
Pince CoAct				
T				
robot				
Actions sur l'objet				
Nom :				
Robot UR5e				
Modifier nom	Modifier nom			
Visible Rendre invisible	Rendre visible			
Transformée nère :				
CentreRail				
Modifier transformée	e pére			
Integrer une autre	e CAO			
Supprimer				
Actions globales				
Tous visibles	Tous invisibles			
	Tous visibles Tous invisibles			
Ajouter API	Ajouter IHM			
Fermer				
1				

Figure III.3 : Formulaire de gestion des objets de la cellule

Il est possible de :

- O Ajouter des objets à la cellule (uniquement des APIs ou des IHMs)
- Supprimer des objets de l'environnement ; dans ce cas, les transformées enfant de l'objet supprimé sont rattachées au monde de la cellule
- O Modifier des paramètres de l'objet sélectionné :
 - changer son nom, sa visibilité
 - modifier la transformée père de l'objet
 - modifier sa CAO en la remplaçant par une autre de la CAO ; sous réserve qu'il s'agisse d'un

Aide_CAD_Robot

objet de même type, avec le même nombre daxes et le même nombre de solides. Il n'est pas possible de modifier le type d'un objet une fois celui-ci créé.

Créé avec HelpNDoc Personal Edition: Rationalisez la création de votre fichier d'aide CHM avec HelpNDoc

Gestion des transformées

Environnement > Gérer les transformées

Accès rapide par le barre d'outils : icône

Cette fonctionnalité permet de gérer les transformées de la cellule (ajouter, modifier ou supprimer), et donc le positionnement des objets qui y sont rattachés. La fenêtre qui apparaît alors est représentée figure III.4.

➢ Gestion des transformées		×
Choisir la transformée :	Valeurs de la transformée	
▲ Transformées	Nom · Ressource active · Robot UK	R5e
▲ ! Monde	Identifiant - Labelldentifiant Type de ressource active : 3 : robot	
▲ a table_Centre table	identifiant : Labendentifiant	
a distribution	Père : v Identifiant du père : -1	
a controle	Nombre d'enfants : 0	
a rangement	Visibilité : Visible Toutes visibles Toutes invisibles Tous descendants visibles Tous descendants visibles	endants invisibles
a poubelle	Coordonnées	
▲ ! table_Fixation base robot UI	Calcul des coordonnées : Système de coordonnées du résultat 0: RX-RY-RZ (Cardar	n) ~
! Base->Monde	Visualiser Entrée directe par n points Outil Corriger Centre de 3 points (Valeurs résultat :
⊿ a Poignet->bride	Système de coordonnées d'entrée : 0, DV, DV, D7 (Couter)	
@ Pince CoAct_Trsf_P	Systeme ac coordonnees a entree : U: RX-RY-RZ (Cardan)	(0.000
a mag1_O	RAZ	(0.000
a mag1_X	X 0.000 Contes de longueurs >> Recopier >> Z	0.000
a mag1	y 0.000 mm R	XX 0.000
a mag2_O	7 0.000 O mètres R	RX 0.000
a mag2_X	RX 0.000 Unités d'angles R	RZ 0.000
a man2 V V	py 0,000 O degrés	
Nouveau Iout plier		Revenir
Modifier Tout déplier		
Supprimer Déselectionner		

Figure III.4 : Formulaire de gestion des transformées de l'environnement

L'arborescence de gauche permet de sélectionner une transformée afin de lui appliquer un traitement. Les boutons en bas à gauche de la fenêtre permettent d'ajouter, modifier ou supprimer une transformée.

Les trois quarts droits de la fenêtre permettent de définit ou modifier les caractéristiques d'une transformée : son nom, son père, sa visibilité dans l'environnement.

Enfin, la partie inférieure droite permet de définir les coordonnées de la transformée en question :

- entrée directe pour imposer les valeurs des coordonnées
- par n points pour calculer les coordonnées selon la méthode des 3 ou des 4 points
- « outil » pour lire les coordonnées depuis la position de l'outil du robot actif. Ces coordonnées seront recalculées pour qu'elles soient dans le repère du père choisi
- Centre de trois points pour calculer les coordonnées par la méthode du cercle et de son centre

Attention ! dans tous les cas ci-dessus, ne pas oublier de « recopier » les coordonnées obtenues selon l'une ou l'autre méthode pour que les valeurs soient prises en compte !!!) lors d'une création ou d'une modification

Créé avec HelpNDoc Personal Edition: Nouvelles et informations sur les outils de logiciels de création d'aide

Création et management du RLI

Créé avec HelpNDoc Personal Edition: Améliorez vos fichiers d'aide CHM avec les options de personnalisation avancées de HelpNDoc

Introduction et définition du RLI

Le RLI est le Réseau Local d'Informations. C'est lui qui assure, lors d'une simulation, l'échange des informations entre les différentes ressources de la cellule pour assurer notamment les synchronisations. Ce peuvent être, par exemple :

- L'envoi, par un robot, des ordres d'ouverture/fermeture du préhenseur qu'il emporte
- Le retour d'information de l'état du préhenseur (ouvert/fermé) au robot qui l'embarque
- Les transmissions d'états d'une ressource (type robot) à un automate superviseur de la cellule (prêt, en attente, non disponible,...)
- Les ordres de marche et d'arrêt d'un automate à un robot,
- ...

Contrairement à la réalité, le RLI dans CAD_Robot est unique ; il assure globalement l'échange d'informations entre toutes les ressources.

Un échange d'information se fait toujours depuis une source (une sortie d'une ressource) vers au moins un puits (une entrée d'une ressource). Plusieurs puits peuvent être reliés à la même source. En revanche, il est impossible, pour des raisons de logique, de relier plusieurs sources à un seul puits. Une information peut être de différentes natures :

- Booléenne
- Numérique (entière ou réelle)
- Chaîne de caractères
- Transformée (traduite en les coordonnées sous forme d'une location en angles de Cardan RX-RY-RZ)

L'étude du RLI et sa simulation sont utiles à la conception de la future cellule, afin, notamment, de prévoir ses performances.

L'étude du RLI se fait en deux étapes : la définition des entrées/sorties de chaque ressource communicante puis la définition des signaux qui sont échangés (nom, type, ressource source, ressource puits).

Créé avec HelpNDoc Personal Edition: Améliorez votre processus de documentation avec les fonctionnalités avancées de HelpNDoc

Définition des entrées/sorties d'une ressource

Créé avec HelpNDoc Personal Edition: Outil de création d'aide puissant et convivial pour les documents Markdown

Définition d'un échange d'informations entre deux ressources

Créé avec HelpNDoc Personal Edition: Améliorez votre documentation avec l'analyseur de projet avancé de HelpNDoc

Gestion des ressources de l'environnement

Une ressource est un objet de la cellule qui peut être actionné par les moteurs de ses axes. Une ressource peut donc être :

- un mécanisme,
- un outil,
- un robot,
- un API ou une IHM (à des fins de programmation)
- un opérateur (fonctionnalité à créer)

Il n'est donc pas possible d'activer un simple solide.

Créé avec HelpNDoc Personal Edition: Mettez facilement votre documentation en ligne avec HelpNDoc

Activation d'une ressource

menu Ressource > Activer des ressources

Accès rapide par le barre d'outils : icône

Créé avec HelpNDoc Personal Edition: Convertissez facilement vos fichiers d'aide WinHelp HLP en CHM avec le guide étape par étape de HelpNDoc

Introduction à l'activation

Avant toute utilisation ou action sur une ressource (commande de mouvement, programmation,...), il est nécessaire de choisir sur quoi vont porter ces actions. C'est l'activation d'une ressource. L'activation d'une ressource (objet) revient à choisir (figure V.1):

- le type d'objet à activer
- un objet activable du type choisi précédemment,
- la transformée de l'un des poignets de l'objet (pour les robots à architecture arborescente)
- la transformée enfant du poignet choisi qui décrit la position de l'effecteur qui agira sur l'environnement.

Selon le type de l'objet à activer, toutes ces informations ne sont pas forcément nécessaires (tableau V.1. cidessous)

Type d'objet	Objet	Transformée poignet	Transformée outil
Solide	N/C	N/C	N/C
Mécanisme	Х	Х	N/C
Outil	Х	Х	N/C
Robot	Х	Х	X
API	Х	N/C	N/C
IHM	Х	N/C	N/C
Opérateur	Х	Х	N/C

Tableau V.I. Tableau des informations nécessaires à l'activation d'une ressource selon son type

La fenêtre d'activation des ressources présente d'abord les ressources déjà actives en ①. Puis soit l'onglet « Précédents » soit l'onglet « Nouveau » ② est automatiquement proposé à l'utilisateur, en fonction des choix d'activation qui ont déjà été faits par l'utilisateur (figures V.1.a ou V.1.b).

Créé avec HelpNDoc Personal Edition: Découvrez la puissance et la facilité d'utilisation de HelpNDoc pour la génération de fichiers d'aide CHM

Activation proprement dites de ressources

Les différents choix sont à faire dans l'ordre des numéros indiquée figure V.1a.(3 à 7), car les premiers choix influent sur les possibilités des numéros suivants.

Tous les choix ne sont pas à faire (taleau V.1), car certaine ressources, activables, ne sont pour autant pas dotées d'axes (APIs) ou ne sont pas des robots (pas de modèle géométrique, donc pas de transformée effecteur à définir – cas des mécanismes ou des outils).

La validation des choix pour activer la ressource retenue se fait ensuite par le bouton **(5)**; celui-ci n'est utilisable que lorsque tous les choix requis ont bien été faits et dépend du type de la ressource à activer.

Aide_CAD_Robot

Choisir les ressource	es actives — 🗆 🗙	
Ressources actuelle	ement actives :	
Ressource activée :	Pince CoAct	 Description des ressources
Trsf de la ressource :	Trsf_Pince	actuellement actives
Trsf du descendant :	aucun	
	Revenir	
Précédents Nouve	au	2 Onglet pour nouvelle activation ou
		activation déjà réalisée
Choix de nouvelles re	essources actives	
Type de ressource :	3 - robot 🗸 🗸	B Choix du type de ressource
	Type activable	
		4 Choix de la ressource à activer dans le
Ressources du type choisi :	Robot UR5e	type choisi
Trsf de référence	table_Fixation base robot UR5e	
de l'objet choisi		
		5 Choix de la transformée du
	Choisir trsf poignet 🔶	poignet à activer pour la ressource
Trsf du poignet :	Base->Monde	choisie (enfant de la ressource
		G Choix de la transformée de l'effecteur à
	Choirir tref offactour	activer pour la ressource choisie (enfant du
	Choisir tist enected	noignet)
Trsf de l'effecteur :	Base->Monde	poignet
	Activer	Validation des choix et activation
	Fermer	
	Figure V.1a. : Menu	d'activation d'une ressource

Créé avec HelpNDoc Personal Edition: Partagez facilement votre documentation avec le monde via un magnifique site Web

Réactivation de ressources déjà activées

Pour le cas où l'utilisateur souhaiterait activer à nouveau des ressources qui l'avaient déjà été auparavant, l'onglet « Précédents » (2) permet de retrouver ces choix et de les réactiver. Ceci évite une re-description des ressources à activer qui peut se montrer fastidieuse à la longue (Figure V.1b).

Choisir les ressources actives	
Mode 0 : choix objet, poignet, effecteur	
Ressources actuellement actives :	
Ressource activée : Robot UR5e	 Description des ressources
Trsf de la ressource : Poignet->bride	actuellement actives
Trsf du descendant : Pince CoAct_Trsf_Pince	
Revenir	
	2 Onglet pour la ré-activation
Précédents Nouveau	d'un jeu de ressources déjà connu
Anciens choix déjà effectués	
Robot UR5e / Poignet->bride / Pince CoAct_Trsf_Pince	
•	B choix du jeu de ressources déjà
1	connu à activer
Objet : Type d'objet :	Description du jeu retenu
Transformée effecteur :	
Compatibilité du choix avec le mode :	5 Validation de l'activation
Compatibilité du choix avec l'arborescence :	
Supprimer Choisir	6 Action sur le jeu choisi
5 6 6	
Fermer	
i cinici	

Figure V.1b. : Menu d'activation d'une ressource

Les deux premiers éléments sont identiques à ceux du paragraphe précédent ; les actions de l'utilisateur pour activer un ancien jeu de son choix se font par les actions de 3 à 6.

L'activation des ressources est conditionnée **5** par :

- la compatibilité du mode de choix (depuis l'environnement ou depuis la programmation qui se limite à l'effecteur)
- la compatibilité de l'arborescence des transformées qui a pu évoluer, du fait du changement d'attachement de certains constituants entre-temps.

Créé avec HelpNDoc Personal Edition: Maximisez votre productivité avec les fonctionnalités de création de fichiers d'aide CHM de HelpNDoc

Activation depuis la programmation

menu Application > Programmation du module Données du module > Activer un outil

Cependant, dans ce cas, l'activation ne concernera que le choix de l'effecteur. Le choix des autres ressources en amont seront verrouillés (robot et poignet), car la programmation concerne ces objets spécifiques.

Créé avec HelpNDoc Personal Edition: Générer facilement des livres électroniques Kindle

Notion d'asservissement

Un asservissement permet à un robot de suivre un repère de consigne (issu d'une transformée).

A partir de la description de l'activation d'une ressource (robot + poignet + effecteur) déjà indiquée et sélectionnée de l'onglet "précédents", choisir le bouton "créer un asservissement". La fenêtre de choix d'une transformée permet alors de définir quel sera le repère de consigne à suivre par cette ressource.

Ce choix initial étant incomplet, il convient ensuite de l'affiner dans l'onglet "asservissements" les autre paramètres d'asservissement :

- 0 la configuration de la ressource
- la transformée d'accostage entre l'outil de la ressource et le repère de consigne
- Son activation ou non.

Remarque : il est impossible d'asservir un robot actif ! (il ne peut pas être et déplacé manuellement, et déplacé par une consigne autre).

Créé avec HelpNDoc Personal Edition: Avantages d'un outil de création d'aide

Commande de la réalisation de mouvements à une ressource

menu Ressource > Panneau de contrôle (MCP)

Accès rapide par le barre d'outils : icône

Le MCP (Motion Control Panel) est l'équivalent du "teach pendant" sur les robots réels. Il permet de déplacer l'effecteur de la ressource active dans l'environnement 3D de la cellule. Quatre onglets sont proposés pour déplacer l'effecteur :

Créé avec HelpNDoc Personal Edition: Modifiez et exportez sans effort des documents Markdown

Mode "Ressources"

Ce mode ne sert pas au déplacement de la ressource proprement dit ; il ne sert à qu'choisir la ressource active parmi les précédents choix déjà réalisés dans le menu "activer des ressources" ou à activer un asservissement déjà créé.

Ce sont des raisons d'efficacité qui ont imposé l'existence de cet onglet.

Créé avec HelpNDoc Personal Edition: Modifiez et exportez sans effort des documents Markdown

Mode "Jog"

Le mode de déplacement en "Jog" (figure V.2) peut être réalisé soit (zone de sélection "Type de mouvement") :

- en "articulaire", et on pilote les axes du robot
- en mode "cartésien" selon un repère à choisir : "Monde Celule", "Outil" ou un autre repère de la cellule à définir.

En fonction du mode de déplacement choisi, les boutons de commande changent de signification (axe choisi ou mouvement cartésien choisi).

Aide_CAD_Robot

		n i i i	,				
Ressour	ce activ	e : Robot U	R5e				
Poignet	actif :	Poignet	>bride				
Effecteu	ır actif :	Pince Co	Act_Trsf_l	Pince			
Jog	Posture	es Transfo	ormees 1	fraces			
Jog -180.00	g 1 00		J1:-61.171	X:2	297.268	180.0	00
	J1 -		-61.171	>>		+ IL	
Jog -180.00	2		J2 : -45.686	Y :	87.659	180.0	00
	J2 -		-45.686	>>		J2 +	
Jog -180.00	j3 00		J3 : 68.116	Z:8	376.835	180.0	00
	J3 -		68.116	>>		J3 +	
Jog -180.00	4		J4 : 67.271	a:-1	179.807	180.0	00
	J 4 -		67.271	>>		J4 +	
Jog -180.00	j 5		J5 : 89.944	b	: 0.235	180.0	00
	J5 -		89.944	>>		J5 +	
Jog -180.00	9 6 00		J6 : -150.818	c:	90.352	180.0	00
	J6 -		-150.818	>>		J6 +	
— Ту	pe de m	ouvement			Modalités du	u mouveme	nt
۲	Axes					Pas 1	0.0
0	Outil	20.122			% limite haute	axes	10
0	Monde Autre tra	cellule ansformee			% limite basse	axes	5
au	icune sélec	tion	3	·	D	1.7	
0	Vue				 Position afficience Cellule 	nee O Rob	ot
🗌 Inte	grer le i	nvt dans la	procedure	coura	nte		
Nom de la	trace	t1					\bigcirc
Appre	endre	Nom post	ure ou trsf			Appren	dre
post	ture	Père : Monde			~	transfor	mee

Figure V.2. : MCP en mode "jog"

Créé avec HelpNDoc Personal Edition: Maximisez votre productivité avec l'interface utilisateur efficace de HelpNDoc

Mode "Postures"

Ce mode de déplacement (figure V.3) permet d'envoyer la ressource sur la posture (ensemble de variables articulaires) choisie. Les postures ont été préalablement définies dans le menu Ressources > Gérer les postures ou bien apprises avec le MCP.

La procédure de déplacement consiste en :

- choisir l'une des postures proposée pour la ressource activée
- commander le déplacement de la ressource selon le mode de déplacement voulu.
- Le mode de déplacement peut être réalisé selon 3 types de déplacements (boutons). Le mode "jump" ne représente que la ressource à l'arrivée sans prendre en compte son déplacement.

H G A Pri A R A	ome arde_a_vou pproMaga pproSeau[ostureCont epliUsinag pproSeau(pproSeau(pproLaser	us Isins Droite trole t e Gauche Jump posture MoveJ posture		Valeurs J1 J2 J3 J4 J5 J6	s des axe 0.00 0.00 0.00 0.00 0.00	s: 0 0 0 0 0
G A A R A A	arde_a_voi pproMaga pproSeauI ostureCont pproRebut epliUsinag pproSeauC pproLaser	us Isins Droite trole t e Gauche Jump posture		J1 J2 J3 J4 J5 J6	0.00 0.00 0.00 0.00 0.00	0 0 0 0 0
A P A R A A	pproMaga pproSeauI ostureCont epliUsinag pproSeauC pproLaser J	Isins Droite trole t e Gauche Jump posture MoveJ posture		J1 J2 J3 J4 J5 J6	0.00 0.00 0.00 0.00 0.00	0 0 0 0 0
	pproSeauI ostureCont pproRebut epliUsinag pproSeauC pproLaser J	Droite trole t e Gauche Jump posture MoveJ posture		J2 J4 J5 J6	0.00	0 0 0 0
	ostureCont pproRebut epliUsinag pproSeauC pproLaser J	trole t e Gauche Jump posture MoveJ posture		J4 J5 J6	0.00 0.00 0.00	0 0
A R' A	pproRebut epliUsinag pproSeauC pproLaser J M	t e Gauche Jump posture NoveJ posture		J5 J6	0.00	0
	epliUsinag pproSeauC pproLaser J N	e Gauche Jump posture NoveJ posture		96	0.00	U
	pproSeau pproLaser J N	Gauche Jump posture NoveJ posture				
	pproLaser J N	lump posture NoveJ posture				
	J	lump posture NoveJ posture				
	J	lump posture NoveJ posture				
	J	lump posture NoveJ posture				
	J N N	lump posture NoveJ posture				
	J N N	lump posture NoveJ posture				
	J N N	lump posture NoveJ posture		1		
	N	loveJ posture		1		
	N					
		NoveL posture				
Integ	grer le mvt	t dans la procedu	ire coura	nte		
lom de la	trace t1	1				
	N	lom posture ou t	trsf			

Figure V.3. : MCP en mode "postures"

Créé avec HelpNDoc Personal Edition: Prenez en charge sans effort vos applications Windows avec la génération CHM de HelpNDoc

Mode "Transformées"

Ce mode de déplacement (figure V.4) permet d'envoyer la ressource sur une transformée atteignable. L'atteignabilité d'une transformée est indiquée par un symbole avant son nom dans la liste "transformées" :

- !: la transformée n'est pas atteignable avec cette ressource et cet outil
- a : la transformée est atteignable
- @ : la transformée est déjà atteinte par la ressource.
- ? : la transformée n'est pas pertinente pour le dépacement visé

La procédure consiste en :

- Après avoir choisi la transformée à atteindre,
- la liste "Configurations possibles" se documente. Il convient de choisir l'une des configurations proposée pour que le mouvement soit réalisable.
- Le mode de déplacement peut être alors réalisé selon 3 types de déplacements (boutons). Le mode "jump" ne représente que la ressource à l'arrivée sans prendre en compte son déplacement.

lessou	urce active	: Robot UR5e					
oigne	t actif :	Poignet->bride					
ffecte	ur actif :	Pince CoAct_Trs	f_Pin	ce			
Jog	Posture	s Transformees	Tra	ces	1		
-							
Irar	nstormées	51			Coordo	nnáos nar ran	nort au nàra :
1	! Monde			~	X	0.000	portau pere .
	a table_C	entre table			Y	0.000	
	! table_Fix	kation base robot U	JR5e		z	0.000	
	! Base->N	Aonde			a"	0.000	
	? Poignet	->bride			ь.	0.000	
	a mag1_C) 13			c.	0.000	
	a mag1_X	(
	a mag1_Y	1					
9	a mag1						
	? Pince Co	oAct_Trsf_Pince					
	a mag2_0)					
	a mag2 X	(
	a mag2 Y	,					
F	Père: No	om du nàra					
		sin du pere					
Con	nfiguratio	ns possibles :			Posture co	orrespondant	e:
Con	nfiguratio	ns possibles :			Posture co	orrespondant 0.000	e:
Con	nfiguration	ns possibles :			Posture co J1 J2	orrespondant 0.000 0.000	e:)
Con	nfiguration	ns possibles :			Posture co J1 J2 J3	orrespondant 0.000 0.000 0.000	e:))
Cor	nfiguration	ns possibles :			Posture co J1 J2 J3 J4	orrespondant 0.000 0.000 0.000 0.000	e:))
Con	nfiguration	ns possibles :			Posture co J1 J2 J3 J4 J5	orrespondant 0.000 0.000 0.000 0.000 0.000	e:))
Con	ofiguration	ns possibles :	-1		Posture co J1 J2 J3 J4 J5 J6	orrespondant 0.000 0.000 0.000 0.000 0.000 0.000	e:)))
Con	osture la pluz	s possibles : s proche de l'actuelle : la transformée	-1		Posture co J1 J2 J3 J4 J5 J6	orrespondant 0.000 0.000 0.000 0.000 0.000 0.000	
Con	osture la plu:	s possibles : s proche de l'actuelle : la transformée lump transformée	-1		Posture co J1 J2 J3 J4 J5 J6	orrespondant 0.000 0.000 0.000 0.000 0.000	e:))
Con	osture la plu:	s possibles : s proche de l'actuelle : la transformée lump transformée	-1		Posture co J1 J2 J3 J4 J5 J6	orrespondant 0.000 0.000 0.000 0.000 0.000	e: , , ,
Con	osture la plu:	s possibles : s proche de l'actuelle : la transformée lump transformée MoveJ transformée	-1		Posture co J1 J2 J3 J4 J5 J6	orrespondant 0.000 0.000 0.000 0.000 0.000	e: , , ,
	osture la plu:	s possibles : s proche de l'actuelle : la transformée lump transformée MoveJ transformée MoveL transformée	-1		Posture co J1 J2 J3 J4 J5 J6	orrespondant 0.000 0.000 0.000 0.000 0.000	e:
Con	osture la plu: Lier à l N egrer le n	s possibles : s proche de l'actuelle : la transformée lump transformée MoveJ transformée MoveL transformée nvt dans la procedu	-1		Posture co J1 J2 J3 J4 J5 J6	orrespondant 0.000 0.000 0.000 0.000	e:
Con	osture la plu: Lier à l M egrer le n la trace	s possibles : s proche de l'actuelle : la transformée lump transformée MoveL transformée MoveL transformée nvt dans la procedu t1	-1	oura	Posture co J1 J2 J3 J4 J5 J6	orrespondant 0.000 0.000 0.000 0.000 0.000	
Con	osture la plu: Lier à l N N regrer le n la trace	s possibles : s proche de l'actuelle : la transformée lump transformée MoveJ transformée MoveL transformée nvt dans la procedu t1 Nom posture ou t	-1 ure cc		Posture co J1 J2 J3 J4 J5 J6	orrespondant 0.000 0.000 0.000 0.000	
Con Pr C I Nom de Appr	osture la plus osture la plus Lier à l N Regrer le n la trace	s proche de l'actuelle : la transformée lump transformée MoveJ transformée MoveL transformée nvt dans la procedu t1 Nom posture ou t Père :	-1 ure cc	bura	Posture co J1 J2 J3 J4 J5 J6	orrespondant 0.000 0.000 0.000 0.000	e : Apprendre transformes

Figure V.4. : MCP en mode "transformées"

Créé avec HelpNDoc Personal Edition: Rendez vos PDF plus sécurisés grâce au cryptage et à la protection par mot de passe

Mode "Traces"

Ce mode de déplacement permet de repositionner la ressource active (robot, généralement) sur les différents points et postures d'une trace.

Il permet également d'activer/désactiver la visualisation des traces ainsi que leur enregistrement.

Créé avec HelpNDoc Personal Edition: Mettez à niveau votre processus de documentation avec un outil de création d'aide

Mode "Where"

Cet onglet permet d'obtenir des renseignements sur la ressource active :

- 0 l'état de ses axes
- la configuration de la ressource
- 0 la position courante de l'effecteur par rapport à un repère de référence à définir

Créé avec HelpNDoc Personal Edition: Créer des documentations web iPhone

Apprentissage de postures et de transformées avec le MCP

A tout endroit atteint par la ressource acrive, il est possible d'apprendre une nouvelle posture pour la ressource ou une transformée pour l'environnement. Pour cela :

- renseigner le nom de l'élément dans le cham "Nom posture ou trsf",
- définir le père dans le cas d'une transformée dans le comboBox "Père" (le monde par défaut)
- puis cliquer le bouton adéquat :
 - "Apprendre posture" pour une posture
 - o "Apprendre transformée", pour une transformée

Créé avec HelpNDoc Personal Edition: Optimisez sans effort votre site Web de documentation pour les moteurs de recherche

Gestion des postures de la ressource active

Ressource > **Gérer les postures**

Accès rapide par le barre d'outils : icône

Le MCP (§IV.2.5 précédent) permet à tout instant de créer une posture correspondant à la posture immédiate de la ressource active.

Cette fiche (figure V.5) permet la gestion complète des postures de la ressource active (ajout, modification, suppression). Lorsque qu'une posture est sélectionnée dans la liste de gauche, la ressource active prend immédiatement la posture choisie ; l'utilisateur peut alors changer ses caractéristiques (nom, valeurs...) et appliquer l'action adéquate (nouvelle, ...).

Le changement d'une variable articulaire se fait soit en indiquant une valeur adéquate et précise à l'axe concernée,

soit en déplaçant le « slider » ; cette seconde action est moins précise. La position de la ressource active change avec la modification du slider.

Le bouton « home » permet d'envoyer la ressource active sur la posture où tous ses axes ont pour valeur de variable articulaire « 0 ».

Le bouton « ici » permet de récupérer les valeurs des variables articulaires de la ressource active et de les injecter dans la posture choisie (équivalent à l'action du bouton du MCP « apprendre posture ».

Home	Posture étudiée				
Garde_a_vous ApproMagasins	ApproMagasins			Id= 3	
ApproSeauDroite	 Visualisation 	'n	 Modification 	Posture atteignable	
ApproRebut Replil Isinane	6 premiers axes	Axe quelcond	lue		TT
ApproSeauGauche			Min	Мах	
ApproLaser	J1	0.000	-180.000	180.000	
	J2	-90.000	-180.000	180.000	
	J3	-90.000	-180.000	180.000	7
	J4	-90.000	-180.000	180.000	X
	J5	85.000	-180.000	180.000	
	J6	0.000	-180.000	180.000	
Nouveau	Home	Raus	nir sur la postura choisia	Ini	
Modifier	nome	Neve	nir sur la posture choisie	ICI	
Supprimer				Fermer	

Figure V.5. : Gestion des postures de la ressource active

Créé avec HelpNDoc Personal Edition: Révolutionnez votre révision de documentation avec l'analyseur de projet de HelpNDoc

Aide au placement d'un robot dans un environnement

Ressource > Outils d'atteignabilité

Ce fonctionnalité n'est applicable que pour une ressource (objet) de type « robot ». Elle permet de rechercher où positionner l'origine du robot actif afin d'atteindre au mieux une collection de points de travail. La fiche correspondante permet :

- De sélectionner les points de travail à atteindre
- D'afficher ou non le volume enveloppe du robot actif
- De déplacer manuellement le robot par rapport à son point d'origine et de visualiser l'effet des déplacements sur les points à atteindre
- De calculer, de façon automatique, les différentes positions potentiellement admissibles du robot par rapport à une liste prédéfinie
- D'analyser les résultats obtetnus afin de choisir une position la plus pertinente possible
- De valider la solution retenue par le positionnement effectif de l'outil du robot sur les points à atteindre

Il est possible d'accéder à chacune de ces fonctionnalités directement en utilisant le sous-menu associé au menu précédent.

Créé avec HelpNDoc Personal Edition: Simplifiez votre processus de documentation d'aide avec un outil de création d'aide

Sélection des points de travail à vérifier (à atteindre)

Ce premier onglet du formulaire (figure V.6) permet à l'utilisateur de choisir les points de référence (**cibles**) qui vont permettre de positionner au mieux le robot à placer (cibles). L'atteignabilité d'un point par le robot dans sa position actuelle est indiquée par un symbole avant son nom dans la liste de repères :

- !: le point n'est pas atteignable avec ce robot muni de cet outil depuis cet emplacement
- a : le point est pas atteignable partiellement (toutes les configurations ne sont pas possibles)
- S : limite de singularité pour atteindre le point
- A : le point est atteignable dans toutes les postures, sans restriction
- @ : le point est déjà atteint par le robot avec son outil.

De plus, l'utilisateur indique également comme contrainte sur le robot :

- les limites de ses axes qu'il ne souhaite pas dépasser (en % de leur amplitude)
- la limite des valeurs des axes à ne pas dépasser autour des points de singularité (en degrés)

Aide_CAD_Robot

🕨 Etude d'a	tteignabilit	é			-		×
lessource a	ctive : Ro	bot UR5	ie				
oignet acti	f: Poi	ignet->l	bride				
ffecteur ac	tif: Pin	ice CoA	ct_Trsf_Pi	nce			
ontrainter	Volume any	alanna	Manuelle	Autoplace	Analyza	Test d'att	
ontraintes	voidine env	eloppe	Manuelle	Autopiace	Analyse	lest d att	
Transform	nées à atte	indre :					
 mac	1 Y				^		
🗹 A m	aq1						
Pince	e CoAct_Tr	sf_Pince					
mag	2_0	_					
mag	2_X						
🗌 mag	12_Y						
🗹 A m	ag2						
tabl	e_Fixation_s	seau					
🗌 seau	ı_Suivi seau	12_1					
seau	ı_Suivi seau	12_2					
seau	_Suivi seau	12_3					
🗌 seau	ı_Suivi seau	12_4					
seau	ı_Suivi seau	12_5					
🗹 A se	au_Suivi se	au 2_6					
seau	_Suivi seau	12_7					
seau	I_Suivi seau	12_8			_		
⊠ A se	au_Suivi se	au 2_9			~		
! : non atteigr singularité ; A	able ; a: atteig : atteignable fu	nable partie Ill ; @: en p	el > L: limite : osition	articulaire > S:	limite		
Tout sé	lectionner		[Tout désel	ectionner	1	
Contraint	es sur le ro	DOT:	_				
Limites axe	es :	5.0	00 % de	l'amplitude			
Limite de s	singularité		3 degré	s			
						_	
Revenir en	position in	itiale			Fermer		
T.	N/	0.4		1 .			

Figure V.6. : Sélection des points à atteindre

Créé avec HelpNDoc Personal Edition: Maximisez votre productivité avec l'interface utilisateur efficace de HelpNDoc

Recherche manuelle de l'emplacement du robot

A l'aide des différents boutons du panel de déplacement (figure V.7), l'utilisateur cherche un positionnement adéquat du robot. Le rectangle de l'atteignabilité globale change de couleur en fonction change de couleur en fonction du positionnement du robot et de l'atteignabilité constatée des différents points sélectionnés précédemment.

La légende des couleurs de cet indicateur est indiquée dans la partie basse de l'onglet :

- Vert : tous les points sélectionnés sont complètement atteignables et il existe au moins une configuration commune pour le robot
- Jaune : tous les points sélectionnés sont complètement atteignables et mais il n'y a pas de configuration commune pour le robot
- Orange : Certains points de la sélection ne sont pas complètement attaignables (limite de singularité ou postures proche des butées)
- Rouge : certains points de la sélection ne sont pas atteignables

Aide_CAD_Robot

⊵ Etude d'a	tteignabilité			_		×
Ressource a	ctive : Robot UR	5e				
Poignet actif : Poignet->bride						
ffecteur actif : Pince CoAct_Trsf_Pince						
Contraintes	Volume enveloppe	Manuelle	Autoplace	Analyse	Test d'at	tte I 🕨
Déplac X- Y- Z- RX- RY- RZ- Pas	ement de l'origine 0.000 X+ 0.000 Y+ 0.000 Z+ 0.000 RX+ 0.000 RY+ 0.000 RZ+ 10.000	e du robot	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000		
Atteignabi	lité globale :		Atteignab	le		
, acciginate						
l égende d	Recalcule	r atteignabili	tés			
Points full - config commune Points full - sans config commune						
Points	non atteignables					
n ·		1		-		

Figure V.7. : Positionnement manuel du robot dans l'environnement

Créé avec HelpNDoc Personal Edition: Maximisez vos capacités de documentation avec l'interface utilisateur conviviale de HelpNDoc

Recherche automatisée de l'emplacement du robot ou « autoplace »

Cet onglet permet de définir une collection de points de placement du robot selon une grille (appelés ici « **emplacements** »). Cette grille est définie par un nombre d'emplacements répartis uniformément autour de la position originelle du robot, selon un décalage en translation selon les axes X, Y et Z du pied du robot. Imposer également des rotations du robot autour des emplacements n'est pas réalisé aujourd'hui, pour des raisons de combinatoire très importante de la procédure (figure V.8).

Une fois la grille de recherche définie, la procédure calcule pour chaque emplacement, pour chaque point de la recherche, les différentes postures possibles du robot et classe les différents points selon les résultats obtenus :

- Rouge : nombre d'emplacements où le robot n'atteint pas tous les cibles à atteindre
 - Orange : les cibles dont l'atteignabilité est partielle, à savoir :
 - o Jaune : les emplacements où les cibles présentent au moins une configuration commune
 - Jaune : les emplacements où pour chaque cible au moins une posture n'atteint pas les limites sur les butées
 - Jaune : les emplacements où pour chaque cible au moins une posture n'atteint pas la proximité de singularité
 - Vert : le nombre d'emplacements où le robot atteint toutes les cibles sans aucune restriction (cas assez rare dans la réalité)

Lorsque le nombre d'emplacements « full atteignabilité » (vert) est nul, l'utilisateur peut réaliser une intersection entre les différents sous-ensembles d'emplacements d'atteignabilité partielle (jaune) afin de regrouper le maximum d'avantages sur les points restants.

Au fur et à mesure de ses sélections, l'utilisateur peut sélectionner les emplacements restants dans la liste en partie basse, et positionner le robot sur l'emplacement sélectionné à l'aide du bouton « Positionner le robot sur le point choisi »

Aide_CAD_Robot

➢ Etude d'atteigna	bilité			_		×
Ressource active :	Robot UF	R5e				
Poignet actif :	Poignet-:	>bride				
Effecteur actif :	Pince Co	Act_Trsf_Pi	nce			
Contraintes Volum	e enveloppe	Manuelle	Autoplace	Analyse	Test d'a	tte 🔸 🕨
Grille de recherche min X -100.000 Y -100.000 Z 0.000 Nb de calculs à effi RAZ recherche Points mauvais Tous points atteigr Points ave ET Points as b Points accessibilité Liste des points étu	max 100.00 100.00 ectuer Lance abilité ok c config co outées ingularité optimale udiés	Nb pc 00 00 00 00 00 00 00 00 00 00 00 00 00	oints 3 2 90 che 0 0 0 0 0 0 0 0 0 0 0 0 0			
Positionner le r	obot sur le	point choi	si			
Revenir en positio	on initiale			Fermer		

Figure V.8. : Recherche automatique du positionnement du robot dans l'environnement **Attention !** L'algorithme « autoplace » de placement automatique de robot est largement

combinatoire ; il est donc fortement conseillé, lors d'une recherche, d'évaluer son temps global d'exécution. Plusieurs heures de calculs peuvent être nécessaires.

Créé avec HelpNDoc Personal Edition: Convertissez rapidement et facilement votre document Word en eBook ePub ou Kindle

Test d'atteignabilité réelle

Lorsque le robot est positionné à un emplacement satisfaisant, l'utilisateur peut tester visuellement l'atteignabilité ce chaque cible (figure V.89 en sélectionnant l'une d'entre elles, puis une des configurations possibles. Ces deux sélections positionnent le robot depuis l'emplacement choisi, sur la cible choisie selon la configuration choisie.

Figure V.9. : Vérification de l'atteignabilité des points en fonction du repositionnement du robot

Créé avec HelpNDoc Personal Edition: Optimisez sans effort votre site Web de documentation pour les moteurs de recherche

Création d'une application pour une ressource

Toutes les actions issues du menu « application » se font pour la ressource qui est sélectionnée.

Créé avec HelpNDoc Personal Edition: Comment protéger vos PDF avec le cryptage et les mots de passe

Description du « Master »

Créé avec HelpNDoc Personal Edition: Révolutionnez votre révision de documentation avec l'analyseur de projet de HelpNDoc

Programmation

menu Application > Programmation du module

Accès rapide par le barre d'outils : icône

Créé avec HelpNDoc Personal Edition: Sites web iPhone faciles

Programmation en langage générique

Présentation générale

Une application est l'ensemble des modules qui décrivent le fonctionnement et les interactions des ressources d'une cellule.

Un module est un fichier contenant l'ensemble des données, programmes et sous-programmes qui permettent de décrire le fonctionnement d'une ressource (robot, API, mécanisme,...).

Les programmes et sous-programmes sont appelés des procédures. Une procédure contient un ensemble de fonctions (ou ordres), ordonnées suivant une logique d'enchaînement. Chaque fonction met en œuvre un ensemble de paramètres.

Différents langages sont disponibles pour écrire un module :

- Un langage générique, proche du « scratch » (<u>https://fr.wikipedia.org/wiki/Scratch_(langage</u>)
- et des langages issus de la programmation des automatismes séquentiels (langages pour les APIs), issus de la norme CEI 611131-3 (<u>https://fr.wikipedia.org/wiki/CEI_61131-3</u>); les langages issus de cette norme sont :
 - o le SFC (Serial Function Chart) ou grafcet (encore nommé G7)
 - o le CFC (Continuous Function Chart)
 - o le Ladder (à venir bientôt)

La figure V1.2.1 donne un aperçu général de la fenêtre générale de programmation. Les principales fonctionnalités de cette fenêtre sont :

1 accès aux différentes fonctionnalités de programmation par le menu ; ces fonctionnalités sont regroupées dans quatre menus généraux :

Module : ouverture, options de programmation, enregistrement, fermeture,...

Données du module : Gestion des variables globales, choix de la procédure de démarrage, changement d'effecteur actif (voir §V.1.4)...

Procédure courante nouvelle, modification (nom, langage, paramètres d'entrée, variables locales,...)

Equations : gestion des équations de la procédure sélectionnée

2 liste des fonctions du module

3 Gestion rapide des données liées à la procédure sélectionnée

- choix comme procédure de démarrage du module
- mémorisation de l'achèvement de la procédure en cours
- liste des équations de la procédure sélectionnée

vue de la procédure en cours d'écriture (ici, en « Scratch » (ou langage générique) en mode hiérarchique des fonctions de la procédure sélectionnée en 2. La fonction en cours d'édition est alors marquée du « prompt » étoile (*).

5 liste des paramères de la fonction sélectionnée en **3**

6 Panneau d'édition de la procédure affichée en 4 (modification, suppression, copier/coller,...)

7 Regroupement des assistants d'écriture des différentes fonctions de la procédure sélectionnée et visualisée

Figure VI.1 : fenêtre générale de programmation

Créé avec HelpNDoc Personal Edition: Créer des fichiers d'aide pour la plateforme Qt Help

Panneau d'édition d'une procédure (repère Digure VI.2.1)

Figure VI.2 : panneau d'édition du langage générique

Créé avec HelpNDoc Personal Edition: Générateur complet de livres électroniques ePub

Assistants de programmation des différentes fonctions d'une procédure en langage générique

Les différents assistants de création d'une fonction sont regroupés en sous-panneaux selon les fonctionnalités recherchées :

- 1) **Basiques :** ces assistants permettent de créer des fonctions basiques (attendre, commentaire,...)
- 2) Mouvements : ces assistants permettent de créer des fonctions de mouvement de la ressource activée (move posture, move transformée, mouvement articulaire ou linéaire,...)
- 3) **Outil :** ces assistants permettent par programme de changer de transformée outil (sans repasser par la fenêtre d'activation des ressources du §V.1.) et d'appeler des procédures prédéfinies (à documenter) permettant de transmettre la demande du mode de fonctionnement approprié de l'outil actif.
- 4) Avancés : ces assistants permettent de réaliser des fonctions de haut niveau de la ressource active sans avoir à décomposer celle-ci en sous-fonctions (« pick and place », suivi de chemins, palettisation...). Pour être utilisables, les options adéquates du module en cours doivent avoir été sélectionnées.
- 5) **In-Out** :ces assistants permettent la gestion des entrées/sorties soit digitales (bits) ou analogiques de la ressource active en lecture ou en écriture.
- 6) **Structures :** ces assistants permettent la structuration de la procédure (appel de sous-programme, tests, boucles,...). La notion de pli, permettant une plus grande lisibilité d'une procédure est notamment implémentée.
- 7) Maths : cet onglet est lui-même décomposé en 5 sous-panneaux, à savoir
 - <u>Bool</u>: fonctions permettant de calculer la valeur d'un booléen de sortie à partir d'un ensemble de booléens d'entrée.
 - <u>*Compare*</u>: fonctions de comparaison, permettant de calculer la valeur d'un booléen de sortie à partir d'un ensemble de valeurs numériques d'entrée.
 - o <u>Num :</u> fonctions permettant de calculer la valeur d'un numérique de sortie à partir d'un

ensemble de numériques d'entrée.

- o <u>*Trigo*</u>: fonctions trigonométriques de base (numériques vers numérique)
- <u>*Robotique*</u>: fonctions permettant de manipuler des transformées (calculs) à partir d'autres transformées. Celles-ci sont représentées par des locations en angles de Cardan (Rx-RY-RZ)
- 8) **Multi-tâches :** les fonctions de ce panneau permettent de gérer l'aspect multi-tâche d'un module (lancement, interruption, reprise et destruction de tâches). Une tâche est supportée à son lancement par une procédure autre que la procédure de démarrage.
- 9) **IHM :** en développement
- 10) **Effets physiques** : les fonctions de cet onglet permettent de réaliser des effets sur les constituants du produit de manière à rendre une simulation plus réaliste. En revanche ces fonctions ne sont pas traduites par les post-processeurs. Ce sont des fonctions :
 - <u>Attacher / Détacher :</u> Permet de lier (attacher) un constituant à un préhenseur pour le déplacer. La fonction « Détacher » permet de lier un constituant à un posage fixe. Pour utiliser ces fonctions, il faut indiquer :
 - Le constituant à attacher/détacher
 - Le solide du constituant par lequel celui-ci est attaché
 - La transformée du solide par laquelle le constituant est attaché
 - La transformée à laquelle le constituant est attaché donc généralement, la transformée du posage ou de l'outil qui accueille le constituant (le nouveau père de la transformée du solide)
 - <u>*Rendre visible/invisible :*</u> Ces fonctions permettent de changer la visibilité d'un constituant. Elles sont utiles par exemple pour simuler l'arrivée d'une nouvelle pièce dans la cellule, ou pour au contraire de simuler sa sortie de la cellule.
 - Il suffit alors d'indiquer le constituant concerné par l'opération.

Toute nouvelle fonction créée par ces assistants sont ajoutés à la procédure en cours d'édition (4) Figure VI.2.1) sous le « prompt » (*)

Créé avec HelpNDoc Personal Edition: Améliorez vos fichiers d'aide CHM avec les options de personnalisation avancées de HelpNDoc

Programmation en langage SFC

Créé avec HelpNDoc Personal Edition: Optimisez vos capacités de documentation avec un outil de création d'aide

Programmation d'équation en langage CFC

Créé avec HelpNDoc Personal Edition: Transformez votre processus de documentation d'aide avec un outil de création d'aide

Simulation

menu Application > Simulation > Réaliser une simulation

Accès rapide par le barre d'outils : icône

La simulation d'une application prend automatiquement en charge l'ensemble des modules qui ont été chargés dans les ressources de l'environnement.

Les signaux échangées entre les différents modules (par l'intermédiaire du RLI qui connecte les différentes entrées/sorties de la cellule – voir § IV.4) permet la synchronisation des différentes ressources simulées.

Créé avec HelpNDoc Personal Edition: Rendez votre documentation accessible sur n'importe quel appareil avec HelpNDoc

Gestion des états de départ d'une simulation

Lors de la construction d'une simulation, il est demandé à l'utilisateur de choisir l'état de départ de la cellule.

Ainsi, si un état de départ a été préalablement défini, il est possible de partir de cet état, et donc d'éviter de replacer manuellement tous les constituants dans leur positions de départ, et tous les mécanismes, robots et outils dans leurs postures initiales. A défaut, l'état de départ pris en compte est l'état de la cellule au moment de la construction de la simulation. Les états de départ peut être gérés dans :

menu Application > Simulation > Gérer les états de départ

L'utilisation des états de départ permet de manière simple de remettre toutes les ressources de l'environnement et les transformées dans un état conforme au démarrage d'une simulation. Il évite donc de recharger le fichier d'environnement à chaque nouvelle simulation.

Gestion des états de l'environnement –	-	>
Instant 11234.000		
Instant 29828.000		
Nom do l'état		
Nom de l'état		
Instant courant :		
Ajouter un état courant		
Modifier le nom		
Modifier le nom Supprimer l'état		
Modifier le nom Supprimer l'état Supprimer tous les états		
Modifier le nom Supprimer l'état Supprimer tous les états		
Modifier le nom Supprimer l'état Supprimer tous les états		

Figure VI.3 : Gestion des états de l'environnement

Cette fiche permet également de récupérer l'état actuel de l'environnement et de le mémoriser. Ceci est utile dans le cas de la comparaison entre un état avant simulation, et un état en cours ou après simulation.

Créé avec HelpNDoc Personal Edition: Élevez votre documentation vers de nouveaux sommets avec le référencement intégré de HelpNDoc

Création et gestion d'une simulation

Une simulation se réalise de la manière suivante (figure IV.3) :

- 1) Construire la simulation (bouton **9**)
- 2) Lancer la simulation (bouton **11**)
- 3) Choisir un mode de fonctionnement (en mode « simulation continue », panneau 3 ou en mode « pas-à-pas » panneau 4)
- 4) Gérer le déroulement de la simulation (exécuter/reprendre 12), interrompre 13, faire un pas 14)
- 5) Récupérer les traces obtenues (soit en cours, soit à la fin de la simulation) par le bouton 6
- 6) Stopper définitivement la simulation (pouton **1**8)

La figure VI.3 donne l'aperçu de la gestion d'une simulation.

Attention ! Une simulation n'est réalisable que si au moins un module (pour une ressource de l'environnement) a été créé et qu'au moins une procédure de ce module a été validée (voir § VI.2.).

Figure VI.3 : Création et gestion d'une simulation

Les différents boutons des panneaux de gestion de la simulation ne sont accessibles qu'en fonction de l'état de celle-ci.

Créé avec HelpNDoc Personal Edition: Transformez votre flux de travail de documentation avec l'interface utilisateur intuitive de HelpNDoc

Forçage des signaux du RLI

Dans le cas où l'utilisateur souhaite tester un seul module de manière isolée, il est possible de forcer les informations transportés par le RLI, de manière à simuler l'interaction entre le module testé avec les autres modules de la cellule qui ne sont pas chargés.

Lorsqu'une simulation est interrompue il est possible de forcer les valeurs des informations transmises par le RLI ; une fois les nouvelles valeurs définies, il suffit de reprendre la simulation (dans le mode « simulation continue » ou « pas-à-pas » pour que ces nouvelles valeurs soient prises en compte.

La figure VI.4 décrit le processus de forçage d'un signal transmis par le RLI.

Exécution Cellule Ressource Pr	océdure		
Gestion de la simulation			
Préparation	Messages Forçage		
Ouree d'un pas 5 ms	Connexions		B Liste de signaux transmis
Changer la duree d'un pas	┥ ←	Type: LabelTypeConnexion	par le RLI
Exécution		Source (sortie) :	
START		Variable : LabelVariableSource	Panneau de description d
Mode continu		Puits (entrée) :	caractéristique du signal chois
Simulation continu		Objet : LabelNomObjetPuits	
PLAY D		Variable : LabelVariablePuits	
	Tout forcer Tout	déformer	5 Choix de forçage ou non-
PAUSE	loutioneer		forçage du signal choisi
Mode pas à pas	Malaura haral	Valaus teef (Cardan)	
O Simulation en pas :		valeur num valeur disi (cardan)	
	O Vrai	0.000 Y 0.000	6 Panneau de choix de la
STOP		Z 0.000	valeur de forçage du signal
		Rx 0.000	choisi (fonction du type de
Nb traces : 0	Valeur chaîne	Ry 0.000	signal)
1.000		Rz 0.000	
Simulation Moteur simu			Bouton de validation du
		Forcer la valeur	forçage
Attente ModeAttente			
() Attente ModeAttente			

Figure VI.4 : Forçage des signaux du RLI d'une simulation

Créé avec HelpNDoc Personal Edition: Révolutionnez votre révision de documentation avec l'analyseur de projet de HelpNDoc

Traduction

menu Application > Traduction

Accès rapide par le barre d'outils : icône

Un module est programmé dans un des langages spécifiques du logiciel (Scratch ou langage grafcet, SFC,...). Pour être exploitable dans la cellule réelle, il convient donc de le traduire dans le langage cible, c'est-à-dire le langage réel de la ressource.

La traduction qui est réalisée concerne toujours le module de la ressource active 1. Il suffit de (figure VI.5) :

- 1) Sélectionner le langage-cible de la ressource réelle **2**
- 2) De corriger le système de coordonnées exploité par la cible (il est généralement correct) 3
- 3) De visualiser le résultat **5** du fichier sélectionné en **4** ; parfois plusieurs fichiers peuvent être créés. Dans ce cas, ils sont tous nécessaires au projet du programme et il faut tous les sauvegarder.
- 4) D'enregistrer le résultat obtenu avant de le transférer dans le système de commande de la ressource réelle (généralement par clé USB) Le bouton 6 enregistre un seul des fichiers du projet ; le bouton 7 enregistre tout le projet.

Figure VI.5 : Fiche de traduction d'un module vers un langage cible

Créé avec HelpNDoc Personal Edition: Transformez votre processus de création de fichier d'aide CHM avec HelpNDoc

Sauvegarde de l'ensemble des données dans un seul fichier

menu Application > Enregistrer le projet complet

Créé avec HelpNDoc Personal Edition: Environnement de création d'aide complet

Enregistrement et ouverture d'un fichier .simu

Il peut s'avérer fastidieux d'ouvrir successivement :

- Un fichier d'environnement
- Un ou plusieurs fichiers de modules

Il est donc possible de regrouper l'enregistrement de tous ces fichier dans un seul, qui aura alors pour extension « .simu ».

Lors de l'ouverture d'un nouvel environnement (Environnement > Enregistrer), - voir § IV.1.1- le logiciel reconnaît automatiquement les fichiers « .simu » et recharge l'ensemble des fichiers nécessaires (environnement plus modules d'application).

Créé avec HelpNDoc Personal Edition: Générateur facile de livres électroniques et documentation

Verrouillage d'un fichier .simu

Lors de l'enregistrement d'un fichier .simu, il est possible de coder les données qu'il contient (figure VI.6). Ce codage permet l'interdiction à l'utilisateur de ce fichier de voir ou de modifier les données qu'il contient. Seule la simulation et des fonctions de visualisation de base de l'environnement seront accessibles à l'utilisateur. Le logiciel se comporte alors comme un simple « viewer » de l'application qui a été réalisée.

Ces fonctions de chiffrement du fichier .simu permettent à l'intégrateur qui a réalisé une pré-étude de fournir celle-ci à son client potentiel (end-user) afin que celui-ci puisse apprécier son travail (et déclencher une commande) en limitant la divulgation des solutions techniques mises en œuvre et le savoir-faire de l'intégrateur.

L'option de codage simple (sans indication de la clé de chiffrage) permet un codage qui rendra le fichier obtenu exploitable par toute instance du logiciel en exploitation en mode « viewer ».

L'option de codage avec sur-chiffrage (incluant l'indication d'une clé de sur-chiffrage) permet de restreindre le logiciel aux mêmes fonctions de « viewer ». En revanche, le déchiffrement de l'application demeure possible en renseignant à l'ouverture du fichier la clé de chiffrage.

Le mode d'utilisation du ficher .simu ainsi créé sera restreint en fonction de l'utilisation qui en a été définie :

- Visualisation seule : le logiciel qui ouvrira ce fichier se comportera comme un viewer
- Simulation et tests : le logiciel permettra des opérations de modification mais pas

d'enregistrement ; l'utilisateur aura donc accès au programme et aux choix de construction de la cellule

- Normal : toutes lers fonctions seront accessibles à l'utilisateur

➢ Paramètres de protection de la simulation − □					
Appliquer une prote	ection				
Mode d'utilisation	Normal			~	
Clé de (dé)chiffrage	Cette clé n'est jamais mémori	sée par le	système		
LabelNoCourant					
	Annuler	Enregis	trer le fic	hier	

Figure VI.6 : fenêtre de création d'un fichier « .simu »

Créé avec HelpNDoc Personal Edition: Rationalisez votre processus de documentation avec la fonction de conversion WinHelp HLP vers CHM de HelpNDoc

Lexique, définitions et termes métier

API :	Automate Programmable Industriel
CADRobot :	Le présent logiciel
CAO:	Conception assistée par ordinateur
Home :	C'est la posture qu'atteint tout objet lorsque toutes les variable articulaires de ses axes sont nulles.
IHM:	Interface homme machine
Jog :	Mode de déplacement manuel du robot actif articulation par articulation
Location :	ensemble de 6 coordonnées (3 translations et 3 rotations) généralement permettant de situer le repère d'un objet par rapport à un repère de référence. C'est une image de la transformée.
MAC:	Mode d'Atteinte de la Cible (configuration du robot)
MCP:	Motion Control Panel ("Teach pendant" virtuel de déplacement du robot actif)
MDESC :	Motion DEScriptor (Vitesses, accélérations et jerks à appliquer lors du mouvement d'une ressource)
MGD:	Modèle géométrique direct
MGI:	Modèle géométrique inverse
Module :	Un module est un fichier de programme pour une ressource. Un module contient l'ensemble des procédures et des variables (globales et locales) nécessaires au bon fonctionement de la ressource à laquelle il appartient.
Monde :	C'est le repère qui est à l'origine de l'environnement d'une cellule. C'est le seul repère qui n'a pas de père.
Mouvement arti	culaire : c'est un mouvement où tous les axes du robot actif se déplacent le plus rapidement
	possible pour atteindre leur consignes respectives. La trajectoire obtenue n'est pas maîtrisée au regard de la géométrie
Mouvement liné	aire : à l'inverse du mouvement précédent, la la trajectoire obtenue est maîtrisée d'un point de vue géométrique (ligne droite, arc de cercle,) ; en revanche, les déplacements des axes pour obtenir cette géométrie ne sont plus prévisibles et peuvent, en théorie, dépasser les capacités de certains axes.
PHL:	Programmation hors ligne (ou "off line programing" en anglais)
Point :	ou « point de travail » ; il s'agit en réalité d'un repère, dont les coordonnées sont définies par la transformée qui permet de l'atteindre.
Posture :	c'est la liste ordonnée des valeurs appliquées à chaque axe d'une ressource
Repère :	Lieu de l'environnement défini par un repère orthonormé direct. Le « Monde » est l'ancêtre de tous les autres repères de l'environnement.
Ressource :	Une ressource est l'autre mot utilisé pour décrire un objet de l'environnement.

RLI: *Réseau Local d'Informations*

- **Trace :** Suite de points atteints par l'organe terminal d'un robot lors d'un mouvement ainsi que des postures atteintes par celui=ci.
- **Transformée :** Ce sont les valeurs de position et d'orientation sur les 3 axes X, Y et Z d'un repère par rapport à un autre de référence. Lorsque ces valeurs sont données par 6 valeurs (3 translations et 3 rotations généralement), on parle de <u>coordonnées opérationnelles</u> ou de <u>location</u>. Il convient alors de choisir une convention de représentation pour toute location (angles de Cardan, angles nautiques,...). Ces coordonnées peuvent être aussi représentées sous forme matricielle (matrice homogène 4x4).

Tout repère de l'environnement est défini par sa transformée par rapport à son père.

UME : pour "Unité Mécanique Elementaire". C'est une partie d'objet (par exemple deux solides et un axe de robot) répertoriées dans un fichier servant de "catalogue". Ce concept permet de créer rapidement de nouveaux objets par le simple assemblage, dans la CAO, d'UMEs préalablement créées.

Volume enveloppe : *Volume atteignable par le poignet d'un robot.*

Créé avec HelpNDoc Personal Edition: Convertissez sans effort votre document Word en livre électronique : un guide étape par étape